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Abstract 23 

We present an assimilation system for atmospheric carbon dioxide (CO2) using a Global 24 

Eulerian-Lagrangian Coupled Atmospheric model (GELCA), and demonstrate its capability to 25 

capture the observed atmospheric CO2 mixing ratios and to estimate CO2 fluxes. With the efficient 26 

data handling scheme in GELCA, our system assimilates non-smoothed CO2 data from 27 

observational data products such as the Observation Package (ObsPack) data products as 28 

constraints on surface fluxes.  29 

We conducted sensitivity tests to examine the impact of the site selections and the prior 30 

uncertainty settings of observation on the inversion results. For these sensitivity tests, we made 31 

five different site/data selections from the ObsPack product. In all cases, the time series of the 32 

global net CO2 flux to the atmosphere stayed close to values calculated from the growth rate of 33 

the observed global mean atmospheric CO2 mixing ratio. At regional scales, estimated seasonal 34 

CO2 fluxes were altered, depending on the CO2 data selected for assimilation. Uncertainty 35 

reductions (URs) were determined at the regional scale and compared among cases.  36 

As measures of the model-data mismatch, we used the model-data bias, root-mean-square error, 37 

and the linear correlation. For most observation sites, the model-data mismatch was reasonably 38 

small.  39 

Regarding regional flux estimates, tropical Asia was one of the regions that showed a 40 
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significant impact from the observation network settings. We found that the surface fluxes in 41 

tropical Asia were the most sensitive to the use of aircraft measurements over the Pacific, and the 42 

seasonal cycle agreed better with the results of bottom-up studies when the aircraft measurements 43 

were assimilated. These results confirm the importance of these aircraft observations, especially 44 

for constraining surface fluxes in the tropics. 45 

Keywords: carbon cycle, top-down approach, flux estimation, data selection, carbon dioxide, 46 

inversion, coupled model, flux distribution, tropical Asia 47 

  48 
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1. Introduction 49 

Carbon dioxide (CO2) is a major greenhouse gas and the most important contributor to 50 

anthropogenic climate change. Before the industrial revolution, the atmospheric CO2 exchange 51 

with natural carbon reservoirs (land and ocean) was largely in balance, in the absence of human 52 

influences. However, the combustion of fossil fuels (coal, natural gas, and oil), as well as certain 53 

industrial processes and land-use changes, has considerably increased since the pre-industrial era. 54 

The current level of CO2 in the atmosphere has increased by nearly 40% compared to the level in 55 

the pre-industrial era (Conway and Tans, 2014). Currently, about half of the extra CO2 that modern 56 

human activities have released into the atmosphere has been absorbed by the land biosphere and 57 

oceans (Ciais et al., 2010a). Although global land and ocean carbon sinks increase with rising 58 

atmospheric CO2, the Intergovernmental Panel on Climate Change Fifth Assessment Report stated 59 

with high confidence that global warming will reduce the sinks and partially counterbalance the 60 

equilibrium. It is thus urgent to understand the current status and trends of CO2 exchange between 61 

land, ocean, and atmosphere so that the potential impacts of ongoing global climate change on the 62 

carbon cycle can be assessed. 63 

Inverse modeling is one approach to quantifying the spatiotemporal distribution of sources 64 

and sinks at the Earth’s surface; this approach starts from a set of atmospheric mixing ratio 65 

observations by using an atmospheric transport model and sophisticated statistical inversion 66 
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schemes (Ciais et al., 2010b). Global Eulerian models have been used extensively for global CO2 67 

inversion (e.g., Gurney et al. (2004) and references therein). Initially, Eulerian models with low 68 

spatial resolution (starting from 10˚ × 10˚ in the 1980s) were able to reproduce the seasonal cycle 69 

of global atmospheric CO2 mixing ratios reasonably well. At that time, observational network was 70 

much less abundant and most observations were made at weekly to monthly intervals. In 1996, the 71 

GLOBALVIEW-CO2 data product was provided by the U.S. National Oceanic and Atmospheric 72 

Administration (NOAA) Earth System Research Laboratory (ESRL) 73 

(http://www.esrl.noaa.gov/gmd/ccgg/globalview/). This data product contains extended records of 74 

CO2 with a regular temporal distribution, derived from high-precision atmospheric measurements 75 

such as those from the World Data Centre for Greenhouse Gases 76 

(http://ds.data.jma.go.jp/gmd/wdcgg/introduction.html) of the World Meteorological Organization 77 

Global Atmospheric Watch program and the Carbon Dioxide Information and Analysis Center 78 

(CDIAC; http://cdiac.esd.ornl.gov). The observational records in GLOBALVIEW products are 79 

free of temporal gaps and have been extensively used by many carbon cycle models. Recently, 80 

spatial observational coverage has been expanding as more vertical profiles and better horizontal 81 

coverage become available from aircraft and satellite measurements, and measurement frequency 82 

has been getting higher as more continuous measurements are being made at surface stations, 83 

including tower sites (Bruhwiler et al., 2011; Saeki et al., 2013; Houweling et al., 2015). Models 84 
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have been developed that are able to handle the higher frequency but irregular datasets, and such 85 

models have started to use actual data for inversion (e.g. Rodenbeck et al., 2003; Chevallier et al., 86 

2010; Chevallier et al., 2011). NOAA ESRL released a new set of observation data products in 87 

2012 as a successor to GLOBALVIEW, called Observation Package (ObsPack) data products 88 

(Masarie et al., 2014). 89 

To derive regional surface flux information, high-frequency observations that represent 90 

hourly to synoptic variations are particularly useful. Nevertheless, simulating fine spatial and 91 

temporal CO2 variability in the vicinity of variable sources and sinks is quite challenging. Global 92 

Eulerian models with high spatial resolution have a high computational cost. One way of obtaining 93 

higher resolution flux estimates within a region of interest is to use a “zoomed” or “nested” 94 

atmospheric transport model (Peters et al., 2005; Peylin et al., 2005). The idea of coupling two 95 

different types of models for global and regional modeling for inversion was introduced by 96 

Rodenbeck et al. (2009), and Trusilova et al. (2010) implemented this idea as a coupled system 97 

consisting of TM3, a global Eulerian atmospheric transport model  and the Stochastic Time-98 

Inverted Lagrangian Transport (STILT) regional Lagrangian model. Rigby et al. (2011) 99 

implemented a global inverse model with zoom over several regions resolved with a regional 100 

Lagrangian transport model NAME. Lagrangian particle dispersion models (LPDMs) are an 101 

effective tool for simulating observations at high spatial and temporal resolutions (Lin, 2012). 102 



30 November 2016,  p.7 / 54 
 

Lagrangian models have minimal numerical diffusion, which is inherent in Eulerian models. 103 

LPDMs have been coupled with numerical weather prediction (NWP) models and used extensively 104 

in air-pollution dispersion modeling (Uliasz, 1993). Recently, coupled LPDM/NWP models, such 105 

as the coupled Weather Research and Forecasting-Stochastic Time-Inverted Lagrangian Transport 106 

(WRF-STILT) model, have been used for a wide range of applications, including surface flux 107 

estimates by carbon cycle studies (Gerbig et al., 2003; Gourdji et al., 2010; Nehrkorn et al., 2010; 108 

Pillai et al., 2011).  109 

Ganshin et al. (2012) developed the Global Eulerian-Lagrangian Coupled Atmospheric model 110 

(GELCA) based on a framework introduced by Koyama et al. (2011). GELCA combines two 111 

transport models: The National Institute for Environmental Studies-Transport Model (NIES-TM) 112 

version 8.1i (Maksyutov et al., 2008; Belikov et al., 2013), a Eulerian global transport model, is 113 

coupled with FLEXPART version 8.0 (Stohl et al., 2005), a LPDM. The global background mixing 114 

ratio field generated by NIES-TM is used as time-variant boundary conditions for FLEXPART, 115 

which performs backward simulations from each receptor point (observation location). GELCA 116 

has demonstrated better performance in resolving short-timescale variations compared with NIES-117 

TM only (Koyama et al., 2011; Ganshin et al., 2012). 118 

In this paper, we introduce a global CO2 inverse system using GELCA and we evaluate the 119 

performance of the GELCA inverse modeling system in estimating decadal global monthly CO2 120 
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flux distributions. As constraining observation data, we used an ObsPack data product, which 121 

includes actual data (whereas GLOBALVIEW contains only processed data), to take full 122 

advantage of the coupled modeling approach, which can effectively make use of measurements 123 

reflecting CO2 exchange along a local path or footprint as well as measurements representing 124 

hemispheric-scale background air. We examine the sensitivity of the inverse system to the data 125 

selection by comparing inversion results among five different subsets of the ObsPack data product. 126 

 127 

2 GELCA inverse modeling system 128 

2.1. GELCA coupled atmospheric model 129 

A schematic diagram of the GELCA inverse modeling framework is shown in Fig. 1. We 130 

implemented the coupling at temporal boundaries instead of spatial boundaries. Two-day 131 

backward-transported particles modeled by FLEXPART were combined at the end points with the 132 

background CO2 levels 2 days prior to the observations simulated by NIES-TM. The mixing ratio 133 

𝐶𝐶(𝑥𝑥𝑟𝑟 , 𝑡𝑡𝑟𝑟)  at the receptor location 𝑥𝑥𝑟𝑟  at time 𝑡𝑡𝑟𝑟  can be expressed as the sum of near-site 134 

contributions calculated by FLEXPART and the background contributions calculated by NIES-135 

TM.  136 

𝐶𝐶(𝑥𝑥𝑟𝑟 , 𝑡𝑡𝑟𝑟) = 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛(𝑥𝑥𝑟𝑟 , 0 ≤ 𝑡𝑡𝑟𝑟 − 𝑡𝑡 ≤ 2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) + 𝐶𝐶𝑏𝑏𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏(𝑥𝑥𝑟𝑟 , 𝑡𝑡𝑟𝑟 − 2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑).         (1) 137 
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 FLEXPART simulates the backward transport of 10,000 particles released from each 138 

receptor point (observation location). 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛(𝑥𝑥𝑟𝑟 , 0 ≤ 𝑡𝑡𝑟𝑟 − 𝑡𝑡 ≤ 2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)  is calculated by 139 

integrating the sensitivity of CO2 mixing ratio to the surface fluxes (footprint) along 2-day 140 

trajectory paths of all particles. 𝐶𝐶𝑏𝑏𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏(𝑥𝑥𝑟𝑟 , 𝑡𝑡 − 2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) is the average of the CO2 mixing 141 

ratios at the time of coupling simulated by NIES-TM, weighted by the number of the end points 142 

of the back-trajectories contained in each model grid cell. Detailed description about the Eulerian-143 

Lagrangian coupling is given in (Ganshin et al., 2012).  144 

 The duration of the backward calculations was set to 2 days to be consistent with the 145 

timescale of particles leaving the mixed layer (Gloor et al., 2001). Note that coupling with a 146 

Lagrangian model might not result in a significant improvement, compared with use of a pure 147 

Eulerian model, for remote sites, because numerical diffusion has a significant impact on the 148 

simulated mixing ratios at the receptor only if there are inhomogeneous sources or sinks near (less 149 

than about 2 days upwind of) the receptor. Figure S1 shows the examples of footprints in winter 150 

and summer for one of the observational datasets used in this study, from which we point out the 151 

following features. Firstly, the distribution of observation sites mostly determines the footprint 152 

coverage, making North America and Europe fairly well covered compared to other regions. 153 

Secondly, the footprint coverage varies significantly with the wind as well. In general, the coverage 154 

widens in winter compared to summer due to the stronger winds during winter in middle and high 155 



30 November 2016,  p.10 / 54 
 

latitudes. The wind direction is important as well. For example, in East Asia, in winter, the wind 156 

blows dominantly from the Siberian High towards the Pacific Ocean, whereas it blows dominantly 157 

from the Pacific High towards the continent in summer. Since most observation sites are located 158 

around the east side of the continent, more surface flux signal can be captured from the continental 159 

East Asia in winter than in summer (Figure S1). 160 

 The meteorological fields driving both models were taken from the Japan 161 

Meteorological Agency Climate Data Assimilation System (Onogi et al., 2007), which has a 162 

regular horizontal resolution of 1.25° × 1.25°, 40 hybrid sigma-pressure vertical model levels, and 163 

a temporal resolution of 6 hours. Planetary boundary layer height data were obtained from the 164 

European Centre for Medium-Range Weather Forecasts Interim Reanalysis dataset (Dee et al., 165 

2011). 166 

 167 

2.2. Inversion scheme 168 

For long-lived trace gases such as CO2, the assumption that atmospheric mixing ratios 169 

respond linearly to changes in emissions holds well. Under the assumption of linearity, the 170 

relationship between a vector of observed values (z) and that of sources and sinks (s) can be 171 

expressed in matrix form as 172 
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𝑧𝑧 = 𝐻𝐻𝑑𝑑 + 𝑣𝑣,                                                               (2) 173 

where H is a matrix of the sensitivities of observations to changes in emissions or initial conditions 174 

and v represents the model-data mismatch error, which includes both observational and model 175 

errors. The sensitivity of the observations to emission fields can be decomposed into two parts for 176 

the coupled model: 177 

𝐻𝐻 = 𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 + 𝐻𝐻𝑏𝑏𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏.                                                   (3) 178 

The term Hnear_site represents the sensitivity of the observations at a particular site to emissions 179 

surrounding the site as calculated by FLEXPART. The term Hbackground represents the sensitivities 180 

to background emissions (i.e., the impact of emissions beyond the immediate vicinity of the site), 181 

which are estimated by NIES-TM.  182 

Using the Bayesian approach, the measure of the fit between modeled source strengths s 183 

and observed values z is expressed as a cost function J(s), assuming that s, z, and their uncertainties 184 

can be described as Gaussian probability density functions: 185 

𝐽𝐽(𝑑𝑑) = 1
2
�(𝑧𝑧 − 𝐻𝐻𝑑𝑑)𝑇𝑇𝑅𝑅−1(𝑧𝑧 − 𝐻𝐻𝑑𝑑) + �𝑑𝑑 − 𝑑𝑑𝑝𝑝�

𝑇𝑇𝑄𝑄−1�𝑑𝑑 − 𝑑𝑑𝑝𝑝��,                         (3) 186 

where 𝑑𝑑𝑝𝑝 is the vector of the prior source strength, R is the observation error covariance matrix 187 

and Q is the prior source strength error covariance matrix. The prior covariance structure describes 188 

the uncertainties of each regional flux, and the correlation in space of the regional fluxes. In the 189 
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current study, we assumed a diagonal prior covariance matrix, which means that estimated fluxes 190 

were assumed to show no correlation. At the minimum of 𝐽𝐽(𝑑𝑑), the posterior source strength vector 191 

s and the posterior covariance matrix 𝑄𝑄′ are expressed as 192 

𝑑𝑑 = 𝑑𝑑0 + 𝐾𝐾(𝑧𝑧 − 𝐻𝐻𝑑𝑑0),                                                      (4) 193 

𝑄𝑄′ = (𝐼𝐼 − 𝐾𝐾𝐻𝐻)𝑄𝑄.                                                          (5) 194 

where the Kalman gain matrix is  195 

𝐾𝐾 = 𝑄𝑄𝐻𝐻𝑇𝑇(𝑅𝑅 + 𝐻𝐻𝑄𝑄𝐻𝐻𝑇𝑇)−1.                                                   (6)  196 

In a batch mode inversion, all non-observed parameters are estimated using all available 197 

observations simultaneously at each solution step. When the number of observations and source 198 

regions increases, the matrix of basis functions H becomes very large, and the computational cost 199 

becomes very large. To avoid this large computational cost, we employed the fixed-lag Kalman 200 

Smoother optimization technique (Bruhwiler et al., 2005) to minimize J(s) in Eq. 3 rather than a 201 

full-matrix batch mode inversion. In this technique, only a subset of the transport information is 202 

kept at each time step, because most of the signal from source regions decays within a few months 203 

to half a year. The time window of the transport information kept is called the lag length. We used 204 

a lag length of 3 months based on the results of the numerical experiments performed by 205 

Maksyutov et al. (2009) on the influence of various time windows. The detailed description about 206 

the fixed-lag Kalman smoother applied for atmospheric inversion is given in (Bruhwiler et al., 207 
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2005). 208 

The inversion process employed in this study is illustrated in Fig. 2. The modelled CO2 209 

concentrations zmod are sum of the background concentrations zb and the presubtracted 210 

concentrations zp calculated by GELCA. The calculation of zb is started from the initial CO2 211 

mixing ratio 3D field based on an ensemble of forward simulation results by six different transport 212 

models: Gap-filled and Ensemble Climatology Mean (Saito et al., 2011). Details about the prior 213 

fluxes used to calculate zp are given in the next section. In each inversion cycle, the modelled 214 

concentrations are compared to observations zob and the state vector s is optimized with a 3-month 215 

window. With the response functions prepared by GELCA, posterior fluxes from step t are 216 

calculated from the optimized state vector, and incorporated into the background concentration for 217 

step t+1.  218 

In the inversion process, we applied our own criteria to filter outliers from datasets. We 219 

deselected data points for which the model-data mismatch exceeded three times σ of the annual 220 

value of the residual standard deviation (RSD) around the smooth-fit curve of the measurements 221 

at each site. These data-filtering criteria worked much more effectively in keeping as many data 222 

while filtering obvious outliers than eliminating data points with a larger model-data mismatch 223 

than a certain fixed value because the filtering condition is nicely adjusted according to the normal 224 

variability of CO2 records at each site. 225 
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The calculation period was from January 2001 to December 2011. The first year was 226 

considered to be a spin-up period. Fluxes were solved monthly for 64 regions: 42 land regions and 227 

22 ocean regions (Fig. 3). 228 

 229 

2.3. Prior CO2 flux estimates and their uncertainties 230 

As prior CO2 fluxes, we used daily terrestrial biosphere fluxes, monthly oceanic fluxes, 231 

monthly fossil fuel CO2 emissions, and monthly biomass-burning emissions. The spatial 232 

resolution of all prior fluxes used in this study was 1˚ latitude × 1˚ longitude. The fluxes from the 233 

biosphere, the oceans, and fossil fuel burning were developed for the NIES Level 4 data product 234 

of the Greenhouse gas Observing SATellite (GOSAT) project; detailed descriptions are available 235 

in Maksyutov et al. (2013).  236 

For daily CO2 exchange between the terrestrial biosphere and the atmosphere, Net Ecosystem 237 

Production (NEP) of the VISIT (Vegetation Integrative SImulator for Trace gases) process-based 238 

biosphere model was used (Ito, 2010). The physiological parameters of the VISIT model were 239 

optimized by the method described by Saito et al. (2014).  240 

The monthly ocean-atmosphere CO2 exchange was calculated by an ocean pCO2 data 241 

assimilation system (Valsala and Maksyutov, 2010) based on an ocean offline tracer transport 242 
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model (OTTM) (Valsala et al., 2008). The OTTM was coupled to a simple biogeochemical model 243 

that synthesizes the surface ocean pCO2 and air-sea CO2 flux by a variational assimilation method.  244 

Fossil fuel emissions, which were imposed in forward and inverse calculations, were obtained 245 

from the Open-source Data Inventory of Anthropogenic CO2 (ODIAC) emission dataset (Oda and 246 

Maksyutov, 2011); emission estimates were based on CDIAC the country-level estimates (~2008) 247 

and to the year 2008 emissions were projected up to 2011 by using data from the British Petroleum 248 

Statistical Review of World Energy (British Petroleum, 2012). The emissions dataset used in this 249 

study are available from the NIES web site (http://db.cger.nies.go.jp/dataset/ODIAC/). 250 

Prior estimates of CO2 emissions from biomass burning were taken from the Global Fire 251 

Emissions Database version 3.1 (Giglio et al., 2010; van der Werf et al., 2010).  252 

The prior flux uncertainty for land regions and oceanic regions were prescribed as the mean 253 

standard deviation of the monthly NEE calculated by VISIT for the past 30 years (1979-2009) and 254 

the mean standard deviation of the oceanic flux assimilated by OTTM for the period 2001-2009. 255 

 256 

2.4. Atmospheric CO2 observational data 257 

In this study, the global atmospheric CO2 data are from the package version 258 

obspack_co2_1_PROTOTYPE_v1.0.3_2013-01-29, hereafter called the ObsPack product, which 259 
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includes actual CO2 measurement data from multiple observation platforms, including towers, 260 

aircraft, and ships, contributed by 22 laboratories from around the world. Quality control of data 261 

in the ObsPack products is left to the data providers, which means that the criteria for data 262 

selection are not uniform across each product. Most of the data are provided by the data 263 

providers as ‘representative of site,’ indicating that the data have been selected to represent large, 264 

well-mixed air masses. When there was more than one laboratory conducting the same type of 265 

measurements during the same time period at a given site, we chose only one (priority was given 266 

to NOAA). For tower sites, which provide data from multiple sampling altitudes, we used only 267 

data from the highest level as representative of the boundary layer mixing ratio. The 268 

programmable flask package, an automated grab sampler (Turnbull et al., 2012), was categorized 269 

as a flask sampler in this study. The details of each measurement technique are available 270 

elsewhere (e.g. Gomez-Pelaez and Ramos, 2011; Stephens et al., 2011). All sites used in this 271 

study are listed in Table 1. 272 

The mean annual values of RSD were used as elements of the data mismatch error 273 

covariance matrix. The RSD for corresponding sites are provided in the 274 

obspack_co2_1_GLOBALVIEW-CO2_2013_v1.0.3_2013-05-24 product (GLOBALVIEW-275 

CO2, 2013). For the sites that are not included in the GLOBALVIEW product, we used the 276 

average RSD values of all other sites over a latitudinal zone of 20° and an altitudinal level of 1 277 
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km. These RSD values were also used in data filtering described in the section 2.2. The 278 

minimum uncertainty value was set to 0.25 ppm.  279 

In this study, we conducted sensitivity tests for different cases, each consisting of 280 

different site/data selections and observation uncertainties, to determine the impact of the 281 

observation settings on the inversion results. We prepared five cases, a control case dataset and 282 

four different subsets of the control case. The control case used all of the sites listed in Table 1, 283 

whereas the other four cases included only selected sites (indicated by checkmarks in the four 284 

right-hand columns of the table). The number of sites and types of data used in each case are 285 

shown in Table 2. A total of 154 sites were used in the control case, including 35 continuous 286 

measurement sites and 27 aircraft sites. Among 35 continuous sites, data from 29 sites were 287 

pretreated to give the “afternoon mean” and “nighttime mean” that is the average value of 12-288 

16LT and 2-5LT, respectively. We used both afternoon and nighttime means in the control case. 289 

We used only data collected at 00:00 UTC and 12:00 UTC values when continuous data were 290 

provided at an hourly time step, which was the case for 3 JMA sites (MNM, RYO, and YON in 291 

Table 1.) Since these sites are "marine boundary" sites, we considered diurnal cycles were not 292 

significant. Among 27 aircraft sites, 26 are vertical profiles at certain locations except 293 

CONTRAIL (CON; Comprehensive Observation Network for Trace gases by Airliner) (Machida 294 

et al., 2008; Matsueda et al., 2015) of which we used data from a specific sampling mode ASE 295 
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(Automatic Air Sampling Equipment) that sampled at certain latitudes during the level flight 296 

along nearly fixed route between Narita and Sydney/Brisbane. For CON, we aggregated the data 297 

by 5 latitude bin between 30N – 25S, whereas for other aircraft sites, we aggregated the data by 298 

vertical bins. The interval of the vertical bins varied from 0.5 – 2 km, mostly following the 299 

interval used for the corresponding site in the GLOBALVIEW product, 2013. 300 

Case CT used 90 surface sites, including 22 continuous measurement sites and a 301 

shipboard site but no aircraft sites. This case is named Case CT because the selected sites are 302 

those used by CarbonTracker North America (CT2011_oi), a CO2 measurement and modeling 303 

system developed by NOAA (Peters et al., 2007). For Case CT, a prior observation uncertainty 304 

was assigned to each observation site according to the categories defined by Peters et al. (2005); 305 

these uncertainties ranged between 0.75 ppm (marine boundary layer) and 7.5 ppm (difficult 306 

sites). Case NF used 61 surface flask sites in the NOAA ESRL Cooperative Global Air Sampling 307 

Network (Dlugokencky et al., 2013); it included no continuous-measurement or aircraft sites. 308 

The case NF was named meaning “case NOAA Flasks”. In this study, a sensitivity test was first 309 

conducted using the control case, Case CT, and Case NF. The observation locations of these 310 

three cases are shown in Fig. 4. Case SEL and Case NA were then defined on the basis of the 311 

inversion results obtained in the first sensitivity test. For Case SEL, three sites that showed large 312 

model-data mismatch values were removed from the control case. The name SEL means that the 313 
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“data selection” is applied. For Case NA, all aircraft data were removed from Case SEL. NA 314 

stands for “no aircraft data”. Details of these two cases are explained in sections 3.5 and 3.6.  315 

 316 

 317 

3. Results and discussion.  318 

3.1. Global budget/trend 319 

Decadal time series of the annual CO2 fluxes estimated by inversion using the five different 320 

observation datasets (five cases) described in section 2.4 are shown in Fig. 5. The global net fluxes 321 

into the atmosphere are also plotted against the global atmospheric CO2 growth rate derived 322 

directly from the observed CO2 (Dlugokencky and Tans, 2014) for comparison. The time series of 323 

the global net fluxes agreed well among the five cases and were generally consistent with the time 324 

series of the observed growth rate with respect to both year-to-year variations and annual mean 325 

values (Fig. 5a). The interannual variability of the net fluxes appeared to be strongly correlated 326 

with the variability in the land CO2 flux, shown in Fig. 5b. The large interannual fluctuations of 327 

the land flux correspond to El Niño-Southern Oscillation (ENSO) phases (Fig. 5d). High growth 328 

rates of the CO2 mixing ratio in 2003, 2005, 2007, and 2010 were likely due to reduced CO2 329 

uptake by land during El Niño phases (Jones et al., 2001; Knorr et al., 2007; Mabuchi, 2013). The 330 

low land CO2 uptake in 2002 is considered to be due to global dry condition during the period 331 
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(Knorr et al., 2007). The interannual variations of the estimated land flux is in phase with the 332 

ensemble results of nine dynamic global vegetation models (Le Quéré et al., 2013) and with the 333 

atmospheric inversion results of an ensemble of 11 transport models (Peylin et al., 2013) and 7 334 

transport models in which GELCA is included as well (Thompson et al., 2016). The increasing 335 

tendency of the land CO2 sink in the early 2000s (Fig. 5b) was also reported by Peylin et al. (2013). 336 

The effect of ENSO events on the ocean CO2 flux (Fig. 5c) is not clear. In an intercomparison 337 

study of the air-sea CO2 flux in the Pacific Ocean (Ishii et al., 2014), an association of interannual 338 

variation in the tropics with ENSO events was suggested by diagnostic models and ocean general 339 

circulation models, but it was not clear in the results of atmospheric inversions. Since global 340 

interannual variability of land fluxes is generally larger than that of oceanic fluxes, it is more 341 

challenging for atmospheric inversions to resolve the global interannual variations of oceanic 342 

fluxes without interference from larger atmospheric CO2 fluctuations mainly caused by land fluxes.   343 

 344 

3.2. Regional flux distributions 345 

The spatial distributions of the decadal mean CO2 fluxes during 2002–2011 of the control case, 346 

Case CT, and Case NF are shown in Fig. 6. Although the global net fluxes agreed well among 347 

these three cases, at regional scales, we can see differences in the estimated CO2 fluxes among 348 

them due to the different observational data used in each case. The three inversion results share 349 
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some features in common, such as increased uptake in temperate South America and boreal Eurasia 350 

and increased emissions in tropical South America and southwestern Europe, compared to the prior 351 

fluxes. These regions, except for southwestern Europe, are poorly constrained. The results for 352 

tropical Asia (Region 33) are interesting. The decadal mean CO2 flux from this region was positive 353 

(emission) in the control case, but negative (uptake) in both Case CT and Case NF. Considering 354 

that the prior flux in this region is positive, the observational constraints of Case CT and Case NF 355 

changed the flux to negative. In the control case, which had more observational constraints than 356 

the other two cases, the flux was estimated to be positive. The reason for this difference is 357 

discussed in section 3.6.  358 

Table 3 shows the number of data used in the inversion in these three cases. The control case 359 

used twice as many observational data as Case CT and six times as many as Case NF. Just on the 360 

basis of the number of observations, the control case would be expected to constrain the regional 361 

flux estimation much better. However, not only does the effectiveness of the inversion depend on 362 

the amount of observational data, but it also depends strongly on the spatial (and temporal) 363 

coverage of the observation sites. We evaluate the effectiveness of the inversion using two 364 

indicators, the uncertainty reduction (UR) and the model-data mismatch, in the following sections. 365 

 366 

3.3. Uncertainty reduction 367 



30 November 2016,  p.22 / 54 
 

UR is a measure commonly used to evaluate the effectiveness of observational constraints in 368 

different regions. UR is defined as the relative difference between the prior and posterior flux 369 

uncertainty:  370 

UR =  1 − σ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
σ𝑝𝑝𝑝𝑝𝑝𝑝

 , 371 

where σ𝑝𝑝𝑏𝑏𝑠𝑠𝑠𝑠 and σ𝑝𝑝𝑟𝑟𝑠𝑠 are the quadratic means of the posterior standard deviation and the prior 372 

standard deviation, respectively. By definition, the more the posterior error is reduced relative to 373 

the prior error, the closer to 1 UR becomes, which means that more information from observations 374 

is provided to the inversion. Figure 7 shows the UR calculated for each region in each of the three 375 

cases. UR is higher in land regions in the northern mid-high latitudes, where observations are the 376 

most abundant in the framework of the current surface observation network, whereas UR is lower 377 

in the poorly covered tropical Northern Hemisphere and the whole Southern Hemisphere. The 378 

global pattern of the UR distribution is consistent with the UR distributions reported by Chevallier 379 

et al. (2010), who conducted an inversion at both grid scale (3.75˚ × 2.5˚ longitude × latitude) and 380 

regional scale (22 Transcom3 regions distributed worldwide).  381 

The control case showed higher UR than Case NF and Case CT in all regions, and the 382 

difference was significant in East Asia and southern Europe, where the control case had better data 383 

coverage. Case CT had strong constraints in North America, which is the target of the 384 

CarbonTracker North America project (Fig. 7b). Outside of North America, however, Case CT had 385 
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slightly lower URs than Case NF. Considering that most of the stations included in Case NF were 386 

also in Case CT, this UR difference may be due to the relatively larger prior observation uncertainty 387 

values assigned to sites outside North America, which resulted in the constraints in Case CT being 388 

weaker than those in Case NF. 389 

The UR became more sensitive to the exact location of each observational station as the spatial 390 

scale became finer. For example, the Transcom3 “Europe” region is, as a whole, relatively well 391 

covered by observations, but in our land mask in which the Transcom3 “Europe” is divided into 392 

four sub-regions, Western Europe (regions 39 and 41) is well constrained with denser observation 393 

coverage, whereas Eastern Europe (regions 40 and 42) is barely constrained owing to fewer 394 

observation sites. Therefore, the high UR in Transcom3 “Europe” is due mainly to the denser 395 

observation network in Western Europe.  396 

 397 

3.4. Model-data mismatch 398 

The model-data mismatch is another measure used to evaluate the effectiveness of inversion 399 

results. We compared the forward simulation results using the optimized fluxes with observed CO2 400 

mixing ratios at the observation sites and calculated three measures of the model-data mismatch: 401 

the model-data bias, the RMSE, and the linear correlation. The model-data bias is a systematic 402 

mismatch between observations and model (model minus observations) throughout the 403 
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observation period. The RMSE is an aggregated form of the residuals (the difference between 404 

simulated values and observed values). The correlation indicates the strength and direction of the 405 

linear relationship between model output and observed values. These three measures of the model-406 

data mismatch calculated for each observation site in the control case are shown in Table 1, and 407 

the averaged values for all sites used in each case are shown in Table 3. 408 

Table 3a compares these measures among the control case, Case CT, and Case NF. In the 409 

control case, the global mean bias of 0.21 ppm was the smallest of the three cases. The mean 410 

RMSE was ±1.34 ppm for the control case, ±1.66 ppm for Case CT, and ±1.07 ppm for Case NF. 411 

The differences in RMSE may reflect the fraction of continuous data in each dataset, because the 412 

RMSE is affected by the higher variability of continuous data compared with flask data. The mean 413 

correlation coefficient R was 0.962, 0.958, and 0.974 for the control case, Case CT, and Case NF, 414 

respectively. The model-data correlations were high for all cases, indicating overall good 415 

performance of the GELCA inversion system. 416 

The bias and RMSE for each site in the three cases are shown in Fig. 8. The observations were 417 

not well reproduced by the model at sites that showed high values of both bias and RMSE. Nine 418 

sites in the control case showed a bias larger than ±1 ppm: Heidelberg (HEI), Toronto (TOT), Bukit 419 

Kototabang (BKT), Black Sea (BSC), Lutjewad (LUT), Sutro Tower (STR), Hohenpeissenberg 420 

(HPB), Baltic Sea (BAL), and Point Arena (PTA). We investigated the reasons for the 421 
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discrepancies between observations and models at these sites. Among these nine sites, three were 422 

probably strongly influenced by a local CO2 flux such as urban emissions (HEI and TOT) or forest 423 

uptake (BKT). For sites located in cities or downwind of urban areas, the model often failed to 424 

reproduce sporadic sharp peaks in the observations. Continuous measurements inside urban areas 425 

(HEI and TOT) resulted in a significantly negative bias compared to background sites. LUT and 426 

STR often captured a high CO2 plume transported from urban areas of The Netherlands and San 427 

Francisco, respectively. In the case of BSC, the observational behavior has apparently been 428 

changing. The prominent seasonal cycle seen in the early 2000s gradually disappeared, and the 429 

frequency of significantly high mixing ratios increased in the late 2000s. These changes might 430 

reflect a change of either the surrounding environment (possibly increasing CO2 sources) or the 431 

measurement system. When both the topography near a site and nearby source or sink distributions 432 

are complicated, the model tends to express a higher mismatch, as in the cases of HPB, BAL, and 433 

PTA.  434 

GELCA showed significantly better performance compared to NIES-TM at locations that 435 

require finer resolution than 2.5° grid of NIES-TM. For example, two European tower sites 436 

Ochsenkopf (OXK; 50.0°N, 11.8°E) and Pic du Midi (PDM; 42.9°N, 0.1°E) are located close to 437 

the border of the model grids in which the topography is rather complicated (on the top of 438 

mountain). Since NIES-TM cannot resolve the topographical change within each grid, the forward 439 
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simulation doesn’t fit observation well. On the other hand, GELCA handles the simulation in the 440 

vicinity of the observation sites with FLEXPART, resulting in much better fit at these difficult sites. 441 

The observed and simulated CO2 time series for OXK and PDM are shown in Figure S2. The 442 

performance of GELCA depends on site-specific conditions (e.g., source and sink distributions in 443 

the vicinity and topographic features), and should be further investigated in future studies. 444 

 445 

3.5. Data selection to reduce observational noise 446 

Based on the results reported in section 3.4, we designed a new subset called Case SEL to 447 

minimize noise from observations. To avoid strong local influences, data from BSC, HEI, and TOT 448 

were excluded from Case SEL. We also applied temporal data selection to seven continuous sites 449 

located near source or sink areas. Only afternoon averages were used from the tower sites Boulder 450 

Atmospheric Observatory (BAO), Moody (WKT), Beech Island (SCT), Park Falls (LEF), West 451 

Branch (WBI), and Walnut Grove (WGC), and the Pallas-Sammaltunturi (PAL) surface site (PAL), 452 

to exclude local extreme values in the stable boundary layer at night. In contrast, only nighttime 453 

averages were used from a mountain site, Shenandoah National Park (SNP; 1008 m above sea 454 

level) to minimize the bias from local sources or sinks. Temporal data selection has been used in 455 

previous studies carried out since the TransCom Continuous experiment (Peters et al., 2007; Law 456 

et al., 2008; Patra et al., 2008; Chevallier et al., 2010).  457 
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Figure 9b shows the inversion results for Case SEL. The decrease in biospheric emissions from 458 

southwestern Europe (region 39) compared to the control case is the most prominent feature, 459 

whereas the impact of Case SEL was not significant in southeastern Europe (region 40). The 460 

decadal mean decrease of biospheric emissions was 0.076 ± 0.024 PgC/region/year in 461 

northwestern Europe, and 0.040 ± 0.026 PgC/region/year in southwestern Europe; both values 462 

correspond to a 41% change from the estimated regional fluxes in the control case. This result 463 

indicates that HEI, BSC, and PAL significantly affected the inversion results for Western Europe. 464 

Estimation of finely distributed anthropogenic and natural sources and sinks in Western Europe 465 

may need higher spatial and temporal resolution of both prior fluxes and transport simulation. In 466 

contrast, in North America, there was no significant difference between the control case and Case 467 

SEL. This result shows that the temporal data selection of continuous tower observations and the 468 

removal of TOT did not significantly affect the flux estimation in North America.  469 

 470 

3.6. Effect of aircraft observations on flux estimates in tropical Asia 471 

Here we discuss the large difference in terrestrial biosphere fluxes from tropical Asia (region 33) 472 

among the prior and three posterior fluxes described in section 3.2. The decadal mean flux and UR 473 

for this region in the control case, Case CT, and Case NF are shown in Fig. 10. In tropical Asia, 474 

only one observation site, BKT in Indonesia, was used in this study (Fig. 4). We set the observation 475 
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uncertainty for BKT to 2.8 ppm for the control case and Case NF; this value is derived from the 476 

RSD values of the data record at site BKT in the ObsPack GLOBALVIEW product. For Case CT, 477 

the observation uncertainty for BKT was set to 7.5 ppm, which is the maximum uncertainty in the 478 

CarbonTracker model, because of its relatively large model-data mismatch (Peters et al., 2005). 479 

The higher UR for Case NF than Case CT (Fig. 10) can be explained by the smaller prior 480 

uncertainty assigned to BKT as well as by additional constraints from the Western Pacific Cruise 481 

(WPC; shipboard observations in the western Pacific Ocean; Fig. 4c) during 2004, which may 482 

have detected flux signals from tropical Asia.  483 

As shown in Fig. 8, BKT showed the largest positive bias among all sites used in this study. A 484 

similar large positive bias for BKT has been found by many other atmospheric inversion studies 485 

as well (e.g. CarbonTracker Team, 2014). The flask sampling at BKT is conducted on a weekly 486 

basis, usually around 14:00 LT, when the CO2 hourly average mixing ratio reaches its minimum 487 

value (Nahas, 2012). Because the observation site is surrounded by a tropical rainforest, the 488 

samples may be more representative of the daily minimum mixing ratio, which reflects uptake by 489 

local vegetation, than of the daytime large-scale boundary condition. Thus, the net CO2 uptake in 490 

tropical Asia in Case CT and Case NF may be largely due to the BKT observations.  491 

In contrast to Case CT and Case NF, the control case yielded net CO2 emissions in tropical 492 

Asia even though it used BKT data. The UR of the control case was higher not only in tropical 493 
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Asia but also in the overall tropical southern Pacific Ocean, compared to Case NF and Case CT. 494 

This spatial distribution difference of UR suggests that net CO2 emissions in tropical Asia in the 495 

control case might result from the observational constraints in the tropical southern Pacific Ocean, 496 

which were used only in the control case. These observational constraints are aircraft data such as 497 

Rarotonga (RTA; 21.25°S, 159.83°W) and CON, which were included only in the control case. 498 

Therefore, we hypothesize that the aircraft data affected the inverted flux for the tropical Asia 499 

region in the control case. The measurement periods of RTA and CON are 2001-2011 and 2001-500 

2009, respectively. The frequencies of both observations are by-weekly on average. 501 

 To test this hypothesis, we conducted another sensitivity test by removing all aircraft observations 502 

from the control case. Without aircraft data, the decadal mean regional flux in tropical Asia became 503 

negative (Fig. 9c). This result supports our hypothesis that the aircraft data strongly constrained 504 

the CO2 flux estimate in this region. However, the differences did not appear to be significant in 505 

the oceans and other land regions. To check the sensitivity to aircraft data in detail, differences 506 

between decadal mean regional fluxes estimated with (Fig. 9a) and without (Fig. 9c) aircraft data 507 

are shown in Fig. 11. The flux difference in tropical Asia (region 33 in Fig. 11a) stands out among 508 

the regions. Among oceanic regions, the largest flux difference was found in South Pacific north 509 

(region 50 in Fig. 11b). This sensitivity analysis indicates that tropical Asia and its neighboring 510 

ocean regions are the areas most sensitive to the aircraft data used in the inversion. 511 
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To investigate how surface fluxes from tropical Asia are transported, we calculated the distribution 512 

of atmospheric CO2 at three vertical levels, approximately 990, 500, and 250 hPa, from monthly, 513 

pulse emission from the region (annual mean is shown in Fig. 12). We kept a constant CO2 source 514 

(spatially distributed according to the multiple year mean of NEP from VISIT) in tropical Asia, 515 

and the transport model tracked its mixing ratios over the course of a month. The results shown in 516 

Fig. 12 indicates that the signal from surface fluxes in tropical Asia could be detected by aircraft 517 

observations in the mid/upper troposphere through vertical convection and the consequent rapid 518 

horizontal transport in the free troposphere. This active convection in tropical Asia as part of the 519 

Walker circulation must be a key process connecting surface fluxes and aircraft observations.  520 

We next examined the impact of the aircraft data on the seasonality of terrestrial biospheric fluxes 521 

from tropical Asia. The decadal mean seasonal cycle derived from the inversion using the aircraft 522 

data (control case) and the inversion without using the aircraft data (Case NA) are plotted with the 523 

prior flux in Fig. 13. The flux estimates in Case NA became significantly negative (sink) compared 524 

with the prior fluxes, whereas the seasonal estimates were mostly positive (source) in the control 525 

case. This might be due to the increased effect of the negative bias from BKT observation when 526 

we don’t us aircraft measurements. A major difference in the estimated fluxes between the control 527 

case and Case NA was found during two periods: May–June and November–January. During May–528 

June, the estimated flux was almost zero in the control case, whereas Case NA estimated a sink. 529 
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During November–January, the control case estimated large emissions, but Case NA estimated 530 

much lower emissions in November–December and even uptake in January. Niwa et al. (2012) 531 

have also pointed out CO2 emissions in tropical Asia during October–January in their atmospheric 532 

inversion for the period 2006–2008 using CONTRAIL data that were enhanced compared to an 533 

estimate made by using only ground-based data (GLOBALVIEW-CO2). Niwa et al. (2012) used 534 

CONTRAIL CME (Continuous CO2 Measuring Equipment) data, which were binned and monthly 535 

averaged after smoothing and gap-filling, and the inversion was conducted with the NICAM-TM 536 

(Nonhydrostatic Icosahedral Atmospheric Model-based Transport Model). We used only 537 

CONTRAIL ASE data without preprocessing, and we conducted the decadal inversion by GELCA. 538 

The decadal inversion results in this study confirmed the strong impact of aircraft data on surface 539 

flux estimates in tropical Asia.  540 

To further evaluate the seasonality of the estimated fluxes for tropical Asia, we compared our 541 

results with bottom-up studies. Among the limited number of bottom-up studies in this region, the 542 

seasonal cycle of NEP was estimated by continuous CO2 flux measurements using the eddy 543 

covariance technique in tropical peat swamp forests in Central Kalimantan (Hirano et al., 2007; 544 

Hirano et al., 2012). These estimates suggest that the CO2 flux is positive during the rainy season 545 

(November–April) and the late dry season (August–October), whereas it is nearly neutral or 546 

slightly negative during the early dry season (May–July). The neutral flux in the early dry season 547 
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and higher emissions during the early rainy season were also seen in the seasonal cycle of the 548 

control case (Fig. 13). The seasonal cycle of the control case agrees better with the results from 549 

the bottom-up study than Case NA. This result indicates that the inversion with aircraft data 550 

captures well the seasonal signals of the regional land biosphere. Both our inversion results and 551 

those of the top-down study by Niwa et al. (2012) agree better with independent bottom-up studies 552 

when aircraft data are included; thus, aircraft observations play a key role in constraining CO2 flux 553 

estimates in tropical Asia. 554 

 555 

4. Summary and conclusions 556 

We presented an assimilation system for atmospheric CO2 using GELCA, and we demonstrated 557 

its ability to capture observed atmospheric CO2 mixing ratios and to estimate CO2 fluxes. In this 558 

study, to take full advantage of the data handling efficiency of GELCA, we used non-smoothed 559 

observational data from ObsPack as constraints. ObsPack includes various types of direct 560 

atmospheric CO2 measurements, continuous tower measurements, and aircraft measurements, 561 

provided by a large number of laboratories around the world.  562 

We conducted sensitivity studies to examine the impact of the observation network setting on the 563 

inversion results and to optimize the site/data selection to minimize noise while optimizing the 564 

signal from the extensive observation dataset. We selected five different sets of sites/data from 565 
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ObsPack: 1) comprehensive dataset (control case); 2) data selection conformed to the 566 

CarbonTracker North America project (Case CT); 3) data selection conformed to the NOAA ESRL 567 

Cooperative Global Air Sampling Network (Case NF); 4) data selection according to the model–568 

data mismatch of the inversion results of the control case (Case SEL); and 5) Case SEL without 569 

aircraft sites (Case NA).  570 

For all cases, the time series of the global net flux to the atmosphere were similar to that of the 571 

fluxes calculated from the growth rate of the observed global mean atmospheric CO2 mixing ratio. 572 

At regional scales, estimated seasonal CO2 fluxes were altered by the selection of assimilated CO2 573 

data. UR was derived at regional scale and compared among cases. In all regions, UR was higher 574 

in the control case than it was in Case CT and Case NF. Case CT showed considerably higher UR 575 

in North America, whereas outside of North America, Case NF showed slightly higher UR than 576 

Case CT. We employed three measures of model-data mismatch between the forward simulation 577 

results using the posterior fluxes and the observed CO2 mixing ratios: the model-data bias, RMSE, 578 

and the linear correlation. For most observation sites, the model-data mismatch was reasonably 579 

small (global mean bias, 0.21 ± 0.03 ppm; mean RMSE, 1.38 ± 0.23 ppm; correlation coefficient 580 

R > 0.9 for 91% of all used sites). There were some sites with a larger model-data mismatch, caused 581 

mostly by local conditions.  582 

Surface fluxes in tropical Asia were found to be the most sensitive to the use of aircraft 583 
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measurements in the inversion. The seasonal cycle agreed better with the results from bottom-up 584 

studies when aircraft measurements were used. These results confirm the importance of aircraft 585 

observations, especially in constraining surface fluxes in the tropics. 586 

Overall, we found GELCA to be capable of handling various types of observations provided in 587 

ObsPack, and its performance in reproducing observed concentrations was good, with reasonably 588 

small model-data mismatches. The sensitivity studies indicated that the reduction of uncertainty in 589 

CO2 flux estimation could be improved by expanding the observation network. In particular, the 590 

study results highlighted the impact of aircraft measurements over the Pacific on surface flux 591 

estimation in tropical Asia. This study evaluated the basic performance of GELCA as an 592 

assimilation tool for top-down CO2 flux estimation. Studies are now underway, for example, to 593 

integrate more observations (e.g., satellite data) into GELCA and to analyze certain regional 594 

carbon flux estimations. Our future plans include optimization of GELCA's settings (e.g., the 595 

duration of backward simulation by FLEXPART, temporal/spatial resolutions, and preprocessing 596 

of certain types of data) according to the specific aims of an investigation. 597 
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 802 

Figure Captions 803 

 804 

Figure 1. Schematic diagram of GELCA inverse modeling framework. 805 

 806 

Figure 2. Illustration of the inversion process employed in this study. The t indicates the time 807 

step on monthly basis. The modelled CO2 concentrations zmod are sum of the background 808 

concentrations zb and the presubtracted concentrations zp calculated by GELCA. In each 809 

inversion cycle, the modelled concentrations are compared to observations zob and the state 810 

vector s is optimized within a 3-month window. Optimized fluxes are incorporated into the 811 

background concentration (zb’) before calculating for the next time step. The number of asterisks 812 

in the upper right of s shows how many times a set of monthly fluxes has been optimized 813 

previously from past cycles. The prime in the upper right of zb means that the zb has been 814 
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updated. The dashed arrows mean monthly calculations by GELCA. 815 

 816 

Figure 3. Definitions of the 64 regions used in the inversion. 817 

 818 

Figure 4. Map showing the observation site locations of the different site selection cases: (a) 819 

control case (all symbols), Case SEL (green symbols removed), and Case NA (red symbols 820 

removed); (b) Case CT and (c) Case NF. Symbol shapes indicate the type of sampling: ○, 821 

surface discrete; +, surface continuous; ▼, ship; ◇, aircraft. 822 

 823 

Figure 5. Comparison of global annual mean posterior fluxes: (a) net, (b) land biosphere, and (c) 824 

ocean. (d) Multivariate ENSO Index (MEI) (Wolter and Timlin, 1993) for 2002–2011. Positive 825 

fluxes indicate emission and negative fluxes indicate uptake. In (a), the global annual mean 826 

atmospheric CO2 growth rate is shown with net fluxes. The CO2 growth rate in ppm are 827 

converted to the emission rates in Pg of carbon with a conversion factor of 2.12 PgC ppm-1 via 828 

simple molecular weight considerations. In (b) and (c), the global annual mean prior fluxes for 829 

land biosphere and ocean are shown respectively.  830 

 831 

Figure 6. Decadal mean (2002–2011) spatial distributions of posterior fluxes for (a–c) land and 832 
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(e–g) ocean regions: (a, e) control case, (b, f) Case CT, (c, g) Case NF. Prior fluxes from the (d) 833 

land biosphere and (h) ocean. Positive fluxes indicate emission and negative fluxes indicate 834 

uptake. 835 

 836 

Figure 7. Uncertainty reductions by region: (a) control case, (b) Case CT, and (c) Case NF. 837 

 838 

Figure 8. Model-data mismatch for observation sites after inversion: (a) control case, (b) Case 839 

CT, (c) Case NF. The color and size of the colored circles indicate the bias and the RMSE, 840 

respectively. The size of the open circles indicates the prior uncertainty value. 841 

 842 

Figure 9. Comparison of decadal mean (2002–2011) spatial distributions of posterior fluxes for 843 

the land biosphere (left panels) and ocean (right panels): (a) control case, (b) Case SEL, (c) Case 844 

NA. Positive fluxes indicate emission and negative fluxes indicate uptake. 845 

 846 

Figure 10 (a) Prior and posterior land fluxes and (b) uncertainty reduction (UR) in tropical Asia 847 

(Region 33) in the control case, Case CT, and Case NF. Positive fluxes indicate emission and 848 

negative fluxes indicate uptake. 849 

 850 
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Figure 11. Differences between estimated annual mean regional CO2 fluxes from the (a) land 851 

biosphere and (b) ocean derived with and without aircraft observations (control case – Case NA) 852 

during 2002–2011. The numbered regions are shown in Figure 3. Positive fluxes indicate 853 

emission and negative fluxes indicate uptake. 854 

 855 

Figure 12. Annually averaged atmospheric CO2 distributions at (a) 990 hPa, (b) 500 hPa, (c) 250 856 

hPa, calculated from monthly pulsed emission from tropical Asia (Region 33) in 2008. 857 

 858 

Figure 13. Monthly mean land biosphere posterior fluxes (control case - red; Case NA - green) 859 

and prior fluxes (VISIT - gray), averaged over 2002–2011. Positive fluxes indicate emission and 860 

negative fluxes indicate uptake. 861 

 862 

Supplementary Figures 863 

 864 

Figure S1. The footprint of 2-day backward trajectory simulation by FLEXPART in (a) January 865 

and (b) July 2009, for the ground observation dataset used in the control case in this study 866 

(obspack_co2_1_PROTOTYPE_v1.0.3_2013-01-29) was used. 867 

 868 
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Figure S2. CO2 time series at (a) Ochsenkopf (OXK) and (b) Pic du Midi (PDM) simulated by 869 

GELCA (red circle) and NIES-TM (blue circle), along with the observations (gray circle). 870 
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✔
 

 
 

C
B

A
 

C
old B

ay, A
laska 

N
O

A
A

 
g 

f 
55.21

°N
 

162.72
°W

 
   25 

–0.51 
1.07 

0.991 
✔

 
✔

 
✔

 
✔

 

C
D

L 
C

andle Lake, 

Saskatchew
an 

EC
 

g 
i 

53.99
°N

 
105.12

°W
 

 630 
–0.14 

2.57 
0.957 

✔
 

 
 

✔
 

✔
 

C
FA

 
C

ape Ferguson, 

Q
ueensland 

C
SIR

O
 

g 
f 

19.28
°S 

147.06
°E 

   5 
–0.28 

0.72 
0.993 

✔
 

 
 

✔
 

✔
 

C
G

O
 

C
ape G

rim
, Tasm

ania 
N

O
A

A
 

g 
f 

40.68
°S 

144.69
°E 

 164 
–0.14 

0.20 
0.999 

✔
 

✔
 

✔
 

✔
 

C
H

M
 

C
hibougam

au, Q
uebec 

EC
 

g 
i 

49.68
°N

 
74.3

°W
 

 423 
0.04 

2.16 
0.953 

 
 

 
 

✔
 

✔
 

C
H

R
 

C
hristm

as Island 
N

O
A

A
 

g 
f 

1.70
°N

 
157.15

°W
 

   5 
–0.27 

0.30 
0.998 

✔
 

✔
 

✔
 

✔
 

C
IB

 
C

entro de Investigacion 

de la B
aja A

tm
osfera 

N
O

A
A

 
g 

f 
41.81

°N
 

4.93
°W

 
 850 

–0.80 
2.74 

0.863 
 

 
✔

 
✔

 
✔

 

C
M

A
 

C
ape M

ay, N
ew

 Jersey 
N

O
A

A
 

a 
p 

38.83
°N

 
74.31

°W
 

 300 – 8200 
–0.25 – –0.07 

0.71 – 3.68 
0.894 – 0.988 

 
 

 
 

✔
 

 
 

C
O

N
 

C
O

N
TR

A
IL 

N
IES/M

R
I 

a 
f 

 
 

 
 3500 – 12200 

–0.54 – –0.14 
0.43 – 0.76 

0.987 – 0.996 
 

 
 

 
✔

 
 

 

C
PS 

C
hapais, Q

uebec 
EC

 
g 

i 
49.82

°N
 

74.98
°W

 
 387 

0.08 
1.59 

0.884 
 

 
 

 
✔

 
✔

 

C
PT 

C
ape Point 

N
O

A
A

 
g 

f 
34.35

°S 
18.49

°E 
 260 

–0.04 
0.30 

0.999 
 

 
✔

 
✔

 
✔

 

SA
W

S 
g 

i 
34.35

°S 
18.49

°E 
 260 

 
 

 
 

✔
 

✔
 

C
R

I 
C

ape R
am

a 
C

SIR
O

 
g 

f 
15.08

°N
 

73.83
°E 

   66 
–0.53 

1.80 
0.981 

 
 

 
 

✔
 

✔
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 C

R
Z 

C
rozet Island 

N
O

A
A

 
g 

f 
46.43

°S 
51.85

°E 
 202 

–0.22 
0.26 

0.999 
✔

 
✔

 
✔

 
✔

 

C
Y

A
 

C
asey, A

ntarctica 
C

SIR
O

 
g 

f 
66.28

°S 
110.52

°E 
  55 

–0.24 
0.21 

0.999 
✔

 
 

 
✔

 
✔

 

D
N

D
 

D
ahlen, N

orth D
akota 

N
O

A
A

 
a 

p 
47.5

°N
 

99.24
°W

 
  500 – 8100 

–0.39 – –0.16 
0.66 – 1.86 

0.960 – 0.990 
 

 
 

 
✔

 
 

 

D
R

P 
D

rake Passage 
N

O
A

A
 

s 
f 

59.0
°S 

64.49
°W

 
  10 

–0.19 
0.29 

0.997 
 

 
 

 
✔

 
✔

 

EG
B

 
Egbert, O

ntario 
EC

 
g 

i 
44.23

°N
 

79.78
°W

 
 251 

–0.20 
5.04 

0.904 
✔

 
 

 
✔

 
✔

 

EIC
 

Easter Island 
N

O
A

A
 

g 
f 

27.16
°S 

109.43
°W

 
  55 

0.32 
0.74 

0.994 
✔

 
✔

 
✔

 
✔

 

ESP 
Estevan Point,  B

ritish 

C
olum

bia 

C
SIR

O
 

g 
f 

49.38
°N

 
126.54

°W
 

  47 
–0.41 

1.46 
0.962 

 
 

 
 

✔
 

✔
 

EC
 

g 
i 

49.38
°N

 
126.54

°W
 

  47 
 

 
 

 
✔

 
✔

 

N
O

A
A

 
a 

p 
49.38

°N
 

126.54
°W

 
 100 – 5800 

–0.43  – –

0.13 
0.88  – 1.36 

0.981 – 0.991 
 

 
 

 
✔

 
 

 

EST 
Esther, A

lberta 
EC

 
g 

i 
51.66

°N
 

110.21
°W

 
 710 

–0.01 
3.23 

0.913 
 

 
 

 
✔

 
✔

 

ETL 
East Trout Lake, 

Saskatchew
an 

EC
 

g 
i 

54.35
°N

 
104.98

°W
 

 597 
–0.31 

2.04 
0.961 

✔
 

 
 

✔
 

✔
 

N
O

A
A

 
a 

p 
54.35

°N
 

104.98
°W

 
 600 – 7800 

–0.35  – 0.01 
0.94  – 1.77 

0.963 – 0.981 
 

 
 

 
✔

 
 

 

FIK
 

Finokalia, C
rete 

LSC
E 

g 
f 

35.34
°N

 
25.67

°E 
 150 

–0.09 
1.85 

0.948 
 

 
 

 
✔

 
✔

 

FN
S 

N
orth Sea Platform

 (F3) 
R

U
G

 
g 

i 
54.85

°N
 

4.73
°E 

  46 
–1.25 

1.64 
0.956 

 
 

 
 

✔
 

✔
 

FSD
 

Fraserdale 
EC

 
g 

i 
49.88

°N
 

81.57
°W

 
 250 

0.30 
2.91 

0.955 
✔

 
 

 
✔

 
✔

 

FTL 
Fortaleza 

N
O

A
A

 
a 

p 
3.52

°S 
38.28

°W
 

 100 – 4300 
–0.39  – 0.02 

0.45  – 0.80 
0.209 – 0.973 

 
 

 
 

✔
 

 
 

FW
I 

Fairchild, W
isconsin 

N
O

A
A

 
a 

p 
44.66

°N
 

90.96
°W

 
 600 – 8100 

–0.49  – 0.79 
0.59  – 3.05 

0.909 – 0.969 
 

 
 

 
✔

 
 

 

G
M

I 
M

ariana Islands 
N

O
A

A
 

g 
f 

13.39
°N

 
144.66

°E 
   6 

–0.11 
0.58 

0.997 
✔

 
✔

 
✔

 
✔

 

H
A

A
 

M
olokai Island, H

aw
aii 

N
O

A
A

 
a 

p 
21.23

°N
 

158.95
°W

 
 300 – 8100 

–0.16 – 0.27 
0.39 – 0.66 

0.988 – 0.995 
 

 
 

 
✔

 
 

 

H
B

A
 

H
alley Station, 

A
ntarctica 

N
O

A
A

 
g 

f 
75.61

°S 
26.21

°W
 

  35 
–0.12 

0.20 
0.999 

✔
 

✔
 

✔
 

✔
 

H
D

P 
H

idden Peak (Snow
bird), 

U
tah 

N
C

A
R

 
g 

i 
40.56

°N
 

111.65
°W

 
3369 

0.00 
1.29 

0.966 
 

 
 

 
✔

 
✔
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 H

EI 
H

eidelberg 
U

H
EI-IU

P 
g 

i 
49.42N

 
8.68

°E 
 146 

–4.37 
8.17 

0.855 
 

 
 

 
 

 
 

 

H
FM

 
H

arvard Forest, 

M
assachusetts 

N
O

A
A

 
a 

p 
42.54

°N
 

72.17
°W

 
 600 – 8100 

–0.21 – 0.22 
0.66 – 2.43 

0.959 – 0.991 
 

 
 

 
✔

 
 

 

H
IL 

H
om

er, Illinois 
N

O
A

A
 

a 
p 

40.07
°N

 
87.91

°W
 

 600 – 8100 
–0.24 – –0.17 

0.72 – 2.98 
0.926 – 0.992 

 
 

 
 

✔
 

 
 

H
PB

 
H

ohenpeissenberg 
N

O
A

A
 

g 
f 

47.80
°N

 
11.02

°E 
 990 

2.96 
5.03 

0.854 
✔

 
✔

 
✔

 
✔

 

H
U

N
 

H
egyhatsal 

N
O

A
A

 
g 

f 
46.95

°N
 

16.65
°E 

 344 
0.27 

5.28 
0.910 

✔
 

✔
 

✔
 

✔
 

H
M

S 
t 

i 
46.95

°N
 

16.65
°E 

 363 
 

 
 

 
✔

 
✔

 

IC
E 

Storhofdi, 

V
estm

annaeyjar 
N

O
A

A
 

g 
f 

63.40
°N

 
20.29

°W
 

 100 
–0.40 

0.81 
0.995 

✔
 

✔
 

✔
 

✔
 

IZO
 

Izana, Tenerife, C
anary 

Islands 

N
O

A
A

 
g 

f 
28.31

°N
 

16.50
°W

 
2378 

–0.16 
0.69 

0.995 
 

 
✔

 
✔

 
✔

 

A
EM

ET 
g 

i 
28.31

°N
 

16.50
°W

 
2381 

 
 

 
 

✔
 

✔
 

JFJ 
Jungfraujoch 

K
U

P 
g 

i 
46.55

°N
 

7.98
°E 

3580 
–0.05 

1.92 
0.940 

 
 

 
 

✔
 

✔
 

K
EY

 
K

ey B
iscayne, Florida 

N
O

A
A

 
g 

f 
25.67

°N
 

80.16
°W

 
   6 

0.07 
0.82 

0.993 
✔

 
✔

 
✔

 
✔

 

K
U

M
 

C
ape K

um
ukahi, H

aw
aii 

N
O

A
A

 
g 

f 
19.52

°N
 

154.82
°W

 
   8 

–0.34 
0.77 

0.994 
✔

 
✔

 
✔

 
✔

 

K
ZD

 
Sary Taukum

 
N

O
A

A
 

g 
f 

44.08
°N

 
76.87

°E 
 595 

–1.46 
2.50 

0.946 
✔

 
✔

 
✔

 
✔

 

K
ZM

 
Plateau A

ssy 
N

O
A

A
 

g 
f 

43.25
°N

 
77.88

°E 
2524 

0.59 
1.62 

0.97 
✔

 
✔

 
✔

 
✔

 

LEF 
Park Falls, W

isconsin 

N
O

A
A

 
g 

p 
45.95

°N
 

90.27
°W

 
 715 

–0.05 
3.29 

0.939 
✔

 
 

 
✔

 
✔

 

N
O

A
A

 
t 

i 
45.95

°N
 

90.27
°W

 
 868 

✔
 

 
 

✔
a 

✔
a 

N
O

A
A

 
a 

p 
45.95

°N
 

90.27
°W

 
 600 – 4000 

–0.29 – 0.53 
1.11 – 3.63 

0.927 – 0.985 
 

 
 

 
✔

 
 

 

LJO
 

La Jolla, C
alifornia 

SIO
 

g 
f 

32.9
°N

 
117.3

°W
 

  20 
0.70 

0.78 
0.993 

 
 

 
 

✔
 

✔
 

LLB
 

Lac La B
iche, A

lberta 
N

O
A

A
 

g 
f 

54.95
°N

 
112.45

°W
 

 546 
–0.38 

4.03 
0.912 

 
 

✔
 

✔
 

✔
 

EC
 

g 
i 

54.95
°N

 
112.45

°W
 

  550 
✔

 
 

 
✔

 
✔

 

LM
P 

Lam
pedusa 

N
O

A
A

 
g 

f 
35.52

°N
 

12.62
°E 

  50 
–0.41 

1.52 
0.941 

✔
 

✔
 

✔
 

✔
 

LPO
 

Ile G
rande 

LSC
E 

g 
f 

48.8
°N

 
3.58

°W
 

  20 
–0.43 

2.35 
0.93 

 
 

 
 

✔
 

✔
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 LU

T 
Lutjew

ad, N
etherlands 

R
U

G
 

g 
i 

53.4
°N

 
6.35

°E 
  61 

–3.11 
5.40 

0.81 
 

 
 

 
✔

 
✔

 

M
A

A
 

M
aw

son Station, 

A
ntarctica 

C
SIR

O
 

g 
f 

67.62
°S 

62.87
°E 

  42 
–0.27 

0.24 
0.999 

✔
 

 
 

✔
 

✔
 

M
EX

 

H
igh A

ltitude G
lobal 

C
lim

ate O
bservation 

C
enter 

N
O

A
A

 
g 

f 
18.98

°N
 

97.31
°W

 
4469 

0.38 
1.15 

0.937 
 

 
✔

 
✔

 
✔

 

M
H

D
 

M
ace H

ead, C
ounty 

G
alw

ay 
N

O
A

A
 

g 
f 

53.33
°N

 
9.90

°W
 

  26 
–0.17 

0.95 
0.993 

✔
 

✔
 

✔
 

✔
 

M
ID

 
Sand Island, M

idw
ay 

N
O

A
A

 
g 

f 
28.21

°N
 

177.38
°W

 
  11 

0.18 
0.80 

0.994 
✔

 
✔

 
✔

 
✔

 

M
K

N
 

M
t. K

enya 
N

O
A

A
 

g 
f 

0.06
°S 

37.30
°E 

3649 
0.61 

1.78 
0.939 

✔
 

✔
 

✔
 

✔
 

M
LO

 
M

auna Loa, H
aw

aii 
N

O
A

A
 

g 
f 

19.54
°N

 
155.58

°W
 

3402 
–0.14 

0.49 
0.997 

✔
 

✔
 

✔
 

✔
 

N
O

A
A

 
g 

i 
19.54

°N
 

155.58
°W

 
3437 

✔
 

 
 

✔
 

✔
 

M
N

M
 

M
inam

itorishim
a 

JM
A

 
g 

i 
24.28

°N
 

153.98
°E 

  28 
–0.07 

0.66 
0.996 

 
 

 
 

✔
 

✔
 

M
Q

A
 

M
acquarie Island 

C
SIR

O
 

g 
f 

54.48
°S 

158.97
°E 

  13 
–0.18 

0.31 
0.999 

✔
 

 
 

✔
 

✔
 

N
A

T 
M

axaranguape 
N

O
A

A
 

g 
f 

5.51
°S 

35.26
°W

 
  20 

–0.38 
0.80 

0.792 
 

 
✔

 
✔

 
✔

 

N
H

A
 

W
orcester, 

M
assachusetts 

N
O

A
A

 
a 

p 
42.95

°N
 

70.63
°W

 
 200 – 8000 

–0.52 – 0.14 
0.80 – 2.67 

0.947 – 0.990 
 

 
 

 
✔

 
 

 

N
M

B
 

G
obabeb 

N
O

A
A

 
g 

f 
23.58

°S 
15.03

°E 
 461 

–0.31 
0.56 

0.991 
✔

 
✔

 
✔

 
✔

 

N
W

R
 

N
iw

ot R
idge, C

olorado 
N

O
A

A
 

g 
f 

40.05
°N

 
105.59

°W
 

3526 
0.10 

1.16 
0.980 

✔
 

✔
 

✔
 

✔
 

N
C

A
R

 
g 

i 
40.05

°N
 

105.59
°W

 
3528 

✔
 

 
 

✔
 

✔
 

O
B

N
 

O
bninsk 

N
O

A
A

 
g 

f 
55.11

°N
 

36.60
°E 

 484 
–0.35 

2.54 
0.956 

✔
 

 
 

✔
 

✔
 

O
IL 

O
glesby, Illinois 

N
O

A
A

 
a 

p 
41.28

°N
 

88.94
°W

 
 500 – 8100 

–0.11 – 0.36 
0.65 – 3.17 

0.874 – 0.964 
 

 
 

 
✔

 
 

 

O
R

L 
O

rleans 
LSC

E 
a 

f 
47.83

°N
 

2.5
°E 

 200 – 6000 
–0.26 – 0.82 

0.97 – 4.08 
0.882 – 0.986 

 
 

 
 

✔
 

 
 

O
TA

 
O

tw
ay, V

ictoria 
C

SIR
O

 
g 

f 
38.52

°S 
142.82

°E 
  50 

–0.44 
0.32 

0.992 
 

 
 

 
✔

 
✔
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 O

X
K

 
O

chsenkopf 
N

O
A

A
 

g 
f 

50.03
°N

 
11.81

°E 
1185 

0.03 
3.84 

0.889 
✔

 
✔

 
✔

 
✔

 

PA
L 

Pallas-Sam
m

altunturi, 

G
A

W
 Station 

N
O

A
A

 
g 

f 
67.97

°N
 

24.12
°E 

 565 
–0.31 

2.03 
0.973 

✔
 

✔
 

✔
 

✔
 

FM
I 

g 
i 

67.97
°N

 
24.12

°E 
 565 

 
 

 
 

✔
 

✔
 

PD
M

 
Pic D

u M
idi 

LSC
E 

g 
f 

42.94
°N

 
0.14

°E 
2877 

–0.45 
1.73 

0.971 
 

 
 

 
✔

 
✔

 

PFA
 

Poker Flat, A
laska 

N
O

A
A

 
a 

p 
65.07

°N
 

147.29
°W

 
 100 – 7600 

–0.35 – 0.01 
0.73 – 0.97 

0.990 – 0.995 
 

 
 

 
✔

 
 

 

PO
C

 
Pacific O

cean 
N

O
A

A
 

s 
f 

 
 

 
   20 

–0.36 – 0.30 
0.31 – 0.55 

0.994 – 0.998 
✔

 
✔

 
✔

 
✔

 

PSA
 

Palm
er Station, 

A
ntarctica 

N
O

A
A

 
g 

f 
64.92

°S 
64.00

°W
 

  15 
–0.16 

0.27 
0.999 

✔
 

✔
 

✔
 

✔
 

PTA
 

Point A
rena, C

alifornia 
N

O
A

A
 

g 
f 

38.95
°N

 
123.74

°W
 

  22 
–2.47 

2.93 
0.93 

✔
 

✔
 

✔
 

✔
 

R
B

A
 

R
oof B

utte, A
rizona 

N
C

A
R

 
g 

i 
36.46

°N
 

109.10
°W

 
3004 

0.04 
1.13 

0.928 
 

 
 

 
✔

 
✔

 

R
PB

 
R

agged Point 
N

O
A

A
 

g 
f 

13.16
°N

 
59.43

°W
 

  20 
–0.08 

0.42 
0.998 

✔
 

✔
 

✔
 

✔
 

R
TA

 
R

arotonga 
N

O
A

A
 

a 
p 

21.25
°S 

159.83
°W

 
  15 – 6500 

–0.30 – 0.12 
0.36 – 0.51 

0.998 – 0.999 
 

 
 

 
✔

 
 

 

R
Y

O
 

R
yori 

JM
A

 
g 

i 
39.03

°N
 

141.82
°E 

 280 
–0.47 

1.65 
0.977 

 
 

 
 

✔
 

✔
 

SA
N

 
Santarem

 
N

O
A

A
 

a 
p 

2.85
°S 

54.95
°W

 
 100 – 5200 

–0.54 – 0.66 
0.47 – 2.16 

0.935 – 0.996 
 

 
 

 
✔

 
 

 

IPEN
 

a 
f 

2.85
°S 

54.95
°W

 
 100 – 4400 

 
 

 
 

✔
 

 
 

SC
A

 
C

harleston, South 

C
arolina 

N
O

A
A

 
a 

p 
32.77

°N
 

79.55
°W

 
 200 – 13300 

–0.39 – –0.14 
0.56 – 2.81 

0.912 – 0.994 
 

 
 

 
✔

 
 

 

SC
T 

B
eech Island, South 

C
arolina 

N
O

A
A

 
g 

p 
33.41

°N
 

81.83
°W

 
 420 

–0.31 
3.90 

0.850 
 

 
 

 
✔

 
✔

 

N
O

A
A

 
t 

i 
33.41

°N
 

81.83
°W

 
 420 

✔
 

 
 

✔
 

✔
a 

SEY
 

M
ahe Island 

N
O

A
A

 
g 

f 
4.68

°S 
55.53

°E 
   3 

–0.18 
0.57 

0.996 
✔

 
✔

 
✔

 
✔

 

SG
P 

Southern G
reat Plains, 

O
klahom

a 

N
O

A
A

 
g 

f 
36.61

°N
 

97.49
°W

 
 374 

0.24 
3.35 

0.913 
✔

 
✔

 
✔

 
✔

 

LB
N

L 
g 

i 
36.61

°N
 

97.49
°W

 
 374 

✔
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Platform
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pling m

ethod: g, surface; a, aircraft; t, tow
er; s, shipboard; f, flask; i, continuous; p, program

m
able flask package (Turnbull et al., 2012; considered a 

flask sam
pling m

ethod in this study). 

2. 
These param

eters m
ay change over tim

e; only the m
ost current inform

ation is listed in the table. 

3. 
Tem

poral data selection applied in C
ase SEL and C

ase N
A

: a, only afternoon m
ean w

as used; n, only nighttim
e m

ean w
as used. 
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   Table 2. Types of observation sites used in each case. 

C
ase  

T
otal  

Surface flask  
Surface in situ  

Tow
er 

Shipboard 
A

ircraft 
C

ontrol case    
154 

82 
33 

10 
2 

27 
C

ase C
T

 
90 

67 
14 

8 
1 

0 
C

ase N
F 

61 
60 

0 
0 

1 
0 

C
ase SE

L
 

151 
81 

31 
10 

2 
27 

C
ase N

A
 

124 
81 

31 
10 

2 
0 

 Table 3. The num
ber of data used in the inversion, m

ean bias, root-m
ean-square error (R

M
SE), and correlation coefficient (R): a) control case, C

ase C
T, and C

ase N
F; and b) 

control case, C
ase SEL, and C

ase N
A

.  

a) C
ase           N

um
ber of data 

B
ias (ppm

)     
R

M
SE

 (ppm
) 

R
 

C
ontrol case 

171,641 
0.21 

1.34 
0.962 

C
ase C

T
 

78,821 
0.25 

1.66 
0.958 

C
ase N

F 
28,578 

0.23 
1.07 

0.974 
 b) C

ase           N
um

ber of data 
B

ias (ppm
)     

R
M

SE
 (ppm

) 
R

 
C

ontrol case 
171,641 

0.21 
1.34 

0.962 
C

ase SE
L

 
156,549 

0.18 
1.29 

0.963 
C

ase N
A

 
115,082 

0.20 
1.53 

0.958 
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Remaining 2-days contribution of local fluxes to CO
2
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Figure 1.  Schematic diagram of GELCA inverse modeling framework

Fossil Fuel

Biosphere

Ocean

Biomass Burning

Emissions Footprints

×＋

_  _



Figure 2. Illustration of the inversion process employed in this study. The t indicates the 

time step on monthly basis. The modelled CO
2
 concentrations z

mod
 are sum of the back-

ground concentrations z
b
 and the presubtracted concentrations z

p
 calculated by GELCA. 

In each inversion cycle, the modelled concentrations are compared to observations z
ob

 

and the state vector s is optimized within a 3-month window. Optimized fluxes are incor-

porated into the background concentration (z
b
’) before calculating for the next time step. 

The number of asterisks in the upper right of s shows how many times a set of monthly 

fluxes has been optimized previously from past cycles. The prime in the upper right of z
b
 

means that the z
b
 has been updated. The dashed arrows mean monthly calculations by 

GELCA. 
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Figure 3. Definitions of the 64 regions used in the inversion
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Figure 4. Map showing the observation site locations of the different site selec-
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and Case NA (red symbols removed); (b) Case CT and (c) Case NF. Symbol 
shapes indicate the type of sampling: ○, surface discrete; +, surface continuous; 
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Figure 5. Comparison of global annual mean posterior fluxes: (a) net, (b) land biosphere, 

and (c) ocean. (d) Multivariate ENSO Index (MEI) (Wolter and Timlin, 1993) for 2002–2011. 

Positive fluxes indicate emission and negative fluxes indicate uptake.  In (a), the global 

annual mean atmospheric CO
2
 growth rate is shown with net fluxes. The CO

2
 growth rate 

in ppm are converted to the emission rates in Pg of carbon with a conversion factor of 2.12 

PgC ppm-1 via simple molecular weight considerations. In (b) and (c), the global annual 

mean prior fluxes for land biosphere and ocean are shown, respectively. 
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(a) 990 hPa

(b) 500 hPa

(c) 250 hPa

Figure 12. Annually averaged CO2 distributions (ppm) at (a)990 hPa, (b)500 

hPa, (c)250 hPa  calculated from each monthly pulse emission from Tropical 

Asia (Region 33) in 2008.
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Figure S1. The footprint of 2-day backward trajectory simulation by 

FLEXPART in (a) January and (b) July 2009, for the ground obser-

vation dataset used in the control case in this study (obspack_-

co2_1_PROTOTYPE_v1.0.3_2013-01-29).
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Figure S2. CO
2
 time series at (a) Ochsenkopf (OXK) and (b) Pic du Midi 

(PDM) simulated by GELCA (red circle) and NIES-TM (blue circle), along 

with the observations (gray circle).
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